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Introduction

Estrogen receptors (ERs) belong to the NR3 class 
of nuclear receptors.1 This class includes, in addition 
to ERs, progesterone, androgen, glucocorticoid and 
mineralocorticoid receptors which mediate endocrine 
actions of steroids, as well as the orphan receptors 
ERRα-γ. Classically, NR3 receptors act as nuclear 
transcription factors. However, in recent years, the 
discovery of receptor isoforms, together with the 
identification of alternative steroid-initiated mode 
of action and signaling pathways, has enlarged our 
view on estrogen action and furnished novel clues and 
regulatory elements regarding their role in cancer. 
Nuclear-transcriptional actions of estrogen have 
been extensively reviewed vis-à-vis their actions in 

endocrine-related cancer (see for example Ref 2, for 
a recent review, and references herein). In the present 
review, we focus on alternative modes of action of 
estrogen and discuss some elements suggesting pos-
sible novel uses of estrogen agonists and antagonists, 
with a special emphasis on breast cancer, a primary 
target of estrogen.

1. ER sequence and plurality

1.1. ERs exist in multiple isoforms

Two different forms of the estrogen receptor have 
been described, ERα and ERβ. They are coded by 
two distinct genes, located in chromosomes 6 and 14, 
and produce two proteins with 595 and 530 aminoac-
ids, respectively.3-5 The internal structure of the ER 
genes contains 8 exons (Figure 1). Like all members 
of the nuclear receptor family, ERs present an inter-
nal structure comprising 6 evolutionary conserved 
domains named A-F: at the N-terminal, domains 
A/B contain the transcription activation function 1 
(AF1), a ligand-independent transcription activator 
part of the receptor; the highly conserved domain C 
is its DNA-binding domain; domain D is the hinge 
region, responsible for the recruitment, binding and 
function of a number of receptor co-modulators, 
while domains E and F contain the ligand binding 
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domain, together with the transcriptional activation 
function 2 (AF2), a ligand-dependent activator of 
transcription (Figure 1).6,7

Several splice variants have been described for both 
receptor types (Figure 1). Α shorter ERα isoform, 
lacking exon 1 and consequently the AF1 (ERα46), 
has been identified.9 Moreover, an alternative tran-
scription initiation site, within intron 1 of ERα, may 
generate another isoform of this receptor, lacking, 
in addition to AF1, a part of AF2 and containing 
a unique C-terminal aminoacid sequence (exon 9, 
ERα36).8,10 Finally, a number of ERα variants, lack-
ing the 5’UTR of the receptor, have also been found 
in cancer cell lines.11 Of note, all these isoforms may 
heterodimerize with the full-length ERα and thereby 

repress AF1-mediated activity.8,9 ERα46 has been 
found to exert estrogen-related vascular effects,12-15 
while ERα36 has been demonstrated to mediate a 
wide spectrum of estrogen extra nuclear actions.16 In 
addition, several splice variants of ERβ have been 
identified, with specific differences in exon 8 (Figure 
1),17,18 differentially modulating estrogen signaling.19-21

1.2. ER action

Our understanding of the mode of action of ERs 
has significantly expanded in the last decade. Summing 
up the available knowledge, two main ER effects can 
be distinguished (Figure 2):

1. Direct transcriptional effects

Classically, liganded ERs dimerize and translocate 

Figure 1. Schematic representation of the different domains of the estrogen receptors. Figure plotted from data presented in refer-
ences 8 and 2. Only exons are shown in the Figure, with the exception of (1) the intron between A/B and C domains, in which an al-
ternative transcription initiation site has been reported; (2) intron 8, as exon 9 is included only in the sequence of ERα36. Grey boxes 
represent the alternative specific aminoacid sequences for each isoform; in the sequence of the ERα36, this represents the transcrip-
tion of a novel exon 9 (shown in A), while in the ERβ isoform it represents sequence differences in exon 8. See text for further details.
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to the nucleus, acting as transcription factors per se, 
binding to specific promoter estrogen response ele-
ments (ERE) or through protein-protein interactions 
with other transcription factors (tethered actions). 
Through this latter transcriptional activation/repres-
sion, ERs can therefore influence the expression of 
genes lacking EREs.22-25 In addition, unliganded ERs 
may be phosphorylated by activated kinases (for ex-
ample, through growth factor receptor activation26), 
then may dimerize, bind DNA and regulate gene tran-
scription, contributing to the hormone-independence 
of certain tumors.27,28

2. Extranuclear action

Data accumulated during the last two decades 
suggest the existence of a specific extranuclear es-
trogen binding component (membrane-bound and/
or cytoplasmic-related), which, upon activation, may 
trigger a number of signaling events (ion mobilization, 

kinases activation) and ultimately lead to transcrip-
tional events different from those induced by the 
classical or tethered ER action. This element might 
be either a classical ER,29-32 ERα isoforms10,12,15,33,34 or 
a novel, non-identified distinct receptor.35-37

In the following sections, we will focus on the 
extranuclear actions of ERs, since accumulating evi-
dence demonstrates their presence in breast cancer 
(especially in ERα negative tumors) and point to the 
existence of an alternative novel mode of estrogen ac-
tion in cancer that could be therapeutically exploited.

2. Nature of extranuclear ERs

2.1. Native ER isoforms; the role of receptor 
palmitoylation

An element which greatly contributed to the elu-
cidation of ER extranuclear and membrane-initiated 

Figure 2. Cellular mode of action of estrogens. See text for details.
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actions of ERs is the receptor palmitoylation and an-
chorage to the plasma membrane.39,40 Palmitoylation 
is a regulated, universal, reversible, post-translational 
modification, mandatory for the regulation of traf-
ficking, membrane localization and activity of many 
cellular proteins.41,42 A global cell palmitoylation 
profile identifies two types of protein palmitoyla-
tion: stably lipoylated and proteins sustaining a very 
rapid and dynamic palmitoylation.43 Palmitoylation 
increases protein hydrophobicity and membrane 
association.44 ERα as well as ERβ are subjected to 
rapid palmitoylation/de-palmitoylation at cysteine 
residues 447 and 339,45,46 mediated by two palmitoyl-
acyl-transferases (PAT).47 Of particular interest, a 
similar palmitoylation motif exists in all NR3 family 
of nuclear receptors,48 indicating palmitoylation as a 
common post-transcriptional modification of estro-
gen, androgen, glucocorticoid and mineralocorticoid 
receptors. Palmitoylation targets the receptor to the 
plasma membrane where it exists within caveolar 
rafts and interacts with specific membrane proteins, 
including caveolin-1. E2 association induces both 
ERα and ERβ de-palmitoylation and differential 
interaction with specialized proteins. Specifically, the 
ERα-caveolin-1 complex is dissociated and impairs 
receptor association with adaptors and/or signaling 
proteins such as the modulator of the non-genomic 
activity of estrogen receptor (MNAR) and c-Src.49 On 
the other hand, this is not the case for ERβ, which 
shows an increased association with caveolin-1, oc-
curring along with other cytoplasmic kinases (i.e. p38 
kinase) in colon cancer, upon estrogen stimulation 
and de-palmitoylation.50 Therefore, palmitoylation/
de-palmitoylation is necessary for the induction of 
some estrogen-evoked extranuclear actions,51 includ-
ing the balance between proliferation/apoptosis or 
proliferation/differentiation.52-54

2.2. GPR30

At the beginning of the last decade, a novel mem-
brane bound G-protein-coupled receptor (GPR30) 
was identified as a novel estrogen-binding protein.55 
GPR30 (or GPER-1, as it was recently renamed, 
reviewed in Ref 56) has a structure totally different 
from the classical ERs. It is an integral membrane 
protein and a classical G-protein-coupled molecule 
which is present in various cell membrane elements 
(including the plasma membrane and the endoplasmic 

reticulum). Through activation of adenylate cyclase, 
GPR30 triggers the release of EGF membrane-
tethered molecules.57 Although it was introduced as 
the prototype of membrane ERs, the localization of 
this protein among cell membrane components is a 
matter of controversy: older publications suggest that 
this receptor is an integral membrane element,57-59 a 
finding debated by others and attributed to methodo-
logical problems;60 more recent publications provide 
hints as to the localization of this protein within the 
endoplasmic reticulum, or on the Golgi apparatus, 
subjected to a trans-Golgi turnover.61-63 The research 
on this receptor has been enriched by the introduction 
of specific agonists and antagonists (G1 and G15-G36, 
respectively). It was found that GPR30 may medi-
ate a number of estrogen actions in ERα-positive or 
negative tissues (reviewed in Ref 61).

GPR30 activity has been reported in different 
systems, including organs of reproduction (breast, 
endometrium, ovary and testis), the thyroid gland, 
the central nervous system (reviewed in Ref 56, and 
references herein) and the cardiovascular system.64 
However, a number of authors have questioned these 
results,60 while others have suggested that GPR30 
might be a co-modulator of ERα rather than a pure 
estrogen receptor.65 In support of this hypothesis, it has 
been suggested that GPR30 actions may be triggered 
through the ERα isoform ERα36.16 Interestingly, in a 
recent transcriptomic analysis in breast cancer cells,66 
we have reported that over 95% of early modified 
genes, inhibited by the GPR30 antagonist G15, were 
equally inhibited by ICI 182780, a pure ER antagonist, 
implying either a cooperation of GPR30 with classical 
or alternatively spliced estrogen receptors or a direct 
dependence of GPR30 receptor on ER-regulated ef-
fects. Moreover, in the same study we reported a small 
number of genes, related to apoptosis, metabolism, 
immune functions and different signaling pathways 
as being GPR30 specific, a result supporting previous 
publications on GPR30 functions (critically discussed 
in Ref 66, and references herein).

2.3. Novel receptor molecules

In addition to the above cited molecules, there is 
evidence of the existence of (an)other membrane-
located site(s), binding estrogen. The evidence is 
based on the following data. (i) pharmacological data 
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indicate that some of rapid E2 effects are not inhibited 
by ER antagonists.37,67 Indeed, ER-antagonists have 
been proposed as agonists of GPR3056 or ERα36.10 
However, they do not have any effect on some E2-
mediated ion movements and signaling cascades, 
suggesting additional interactions with other mol-
ecules. (ii) The use of plasma membrane imperme-
able E2 analogs (E2-covalently linked with protein 
macromolecules, such as BSA, or with polysacharide 
dendrimers68) triggers rapid actions and induces tran-
scriptional effects different from those attributed to 
nuclear-acting ERα.35,69 (iii) Finally, a small number 
of reports67,70 point to the existence of an unknown 
protein, identified through affinity chromatography 
and E2-binding, from membranes of E2-interacting 
cells, which is partially recognized by ERα antibod-
ies. Unfortunately, until now this molecule(s) has 
not been conclusively identified. These data suggest 
that probably, in addition to the identified receptor 
forms, additional molecules may mediate some of 
the actions of E2, acting preferentially at the plasma 
membrane. Corroborating this conclusion is the fact 
that in breast cancer xenografts, additional molecules, 
interacting with ER-antibodies, are identified, sug-
gesting a more complex regulation of ERs during 
cancer evolution (see below).71

3. ER signaling

3.1. Nuclear signaling: the role of co-regulators 
and receptor shuttling

The main localization of ERs (ERα and ERβ) is 
within the nucleus.72,73 However, their nuclear distri-
bution changes, following ligand binding, as a conse-
quence of their role as transcriptional modifiers: in a 
ligand-free state, the receptor is fairly homogeneously 
distributed within the nuclear matrix; however, after 
E2-interaction, ERs adopt a dotted pattern, typical 
of an interaction with specific nuclear elements.74,75 
In addition, a constant shuttling of the receptor be-
tween the cytoplasm and the nucleus occurs, while 
the binding of agonists and antagonists modify this 
highly dynamic process.76 The nuclear import of ERs 
is regulated by their binding to specific proteins, 
facilitating their transport, through a sequence of 
basic aminoacids (PKKKRK, or, in the case of ERs, 
KRSKK), named nuclear localization signals (NLS, 

critically discussed in Refs 74, 77). ERs contain at least 
three such sequences, ensuring their binding to carrier 
proteins and nuclear import. In contrast, ERs do not 
contain the prototype leucin-rich nuclear export signal 
(NES),78 but have sequences with a limited homol-
ogy to them.79,80 Furthermore, ERs may interact with 
other proteins, containing NESs, and be transported 
to the cytoplasm as protein-protein complexes (dis-
cussed in Ref 81). In consequence, the ERs’ cellular 
localization is a dynamic process, involving continuous 
cycles of nucleo-cytoplasmic shuttling.82 In addition, 
after ER-DNA interaction and/or phosphorylation, 
the receptor molecules become polyubiquitinated, 
dissociate from DNA and transiently accumulate in 
the nuclear matrix to be subsequently degraded by 
the action of the 26S proteasome.80,83-85

In the nucleus, ligand- or phosphorylated-activated 
ERs bind to specific DNA sequences, named estrogen 
response elements (ERE), to modify the transcription 
of estrogen-responsive genes, or they interact with 
other transcription factors through protein-protein 
interactions, to regulate genes lacking EREs.86 This 
binding is enhanced or attenuated by the interaction 
of ER with co-regulator proteins (co-activators or 
co-repressors, respectively).87-90 Co-activator binding 
and activity are relatively well characterized for the 
AF2 region of ER. It is of note that these co-regulator 
proteins contain the characteristic motif LxxLL73,91 
and bind and activate liganded (or phosphorylated) 
ERs, by modifying their conformation. It is important 
to mention that a platform (P295-T311) between the 
hinge (D) and the ligand binding domain (E/F) of 
the ERα, well-conserved among all NR3 class recep-
tors, actively participates in co-regulator binding and 
activity modification of the receptor.92 In contrast, 
the AF1, ligand-independent, co-regulator binding 
region is less well studied. It has been proposed that 
different domains of this region (aminoacids 1-62, 
80-113 and 118-149) represent the active platform of 
this function, while an interaction of AF1 and AF2 
may also occur.26,93 In recent years, there has been 
an intense research effort with a view to identifing, 
modifing or de novo synthesizing ER co-regulator 
peptides with a therapeutic profile,94 especially in 
the light of the increasing emergence of resistance of 
(breast) cancer patients to endocrine therapy. Such 
peptides are called PERMs, for “peptidomimetic 



74	 M. Kampa ET AL

with growth factor receptors. The most extensively 
studied interaction is that with epidermal growth 
factor receptor (EGFR),57,58,156,177-185 in view of its 
prominent role in cancer cell biology and its place as 
a therapeutic target. Indeed, an E2-membrane bind-
ing component seems to interact either physically57,58 
or through Src kinases, transactivating the EGFR 
and inducing specific signaling cascades. Interest-
ingly, in a whole transcriptome analysis that we have 
performed in breast cancer cells (Notas et al, Mol. 
Oncol. in press, 2013), we report that early (3 hours) 
E2 treatment of cells induces, through ERα, a direct 
increase in the transcription of EGFR and human 
epidermal growth factor receptor 3 (HER3), while 
human epidermal growth factor receptor (HER4) 
mRNA is decreased and human epidermal growth 
factor receptor 2 (HER2) levels remain unaltered, 
providing the first evidence of a direct modulation 
of EGFR by estrogen.

3. Modification of intracellular signaling 
cascades

The activation of membrane-related kinases trig-
gers or modifies a number of intracellular signal-
ing cascades. Estrogens have been implicated in 
the modulation of all major intracellular signaling 
cascades: MAP kinases,10,26,27,35,54,145,146,156,158,167,176 Jnk-
cJUN,10,24,35,38,53,63,145,172,181,185 JAK-STAT,28,35,39,81,119,142,162,186 
cAMP signaling, leading to CREB transcription 
initiation119,145,187 and finally PI3K/Akt signal-
ing.14,35,40,119,145,157,162,167,169-172 This latter cascade may 
subsequently lead to transcription and/or to cytoskel-
etal modification. Indeed, E2 is a major modulator of 
actin cytoskeleton, in a variety of cell types,170,171,188-199 
leading to effects as different as axonal growth, en-
dothelial remodeling or cell migration.

4. Transcriptional actions

As stated above, the final outcome of signaling 
pathways triggering by estrogen is the activation of 
a number of nuclear transcription factors. Interest-
ingly, the differential transcriptional signature of 
membrane-acting (E2-BSA) or permeable estrogen 
(E2) leads to the modification of different genes.35,66,170 
Classical ER-mediated signals lead to the activation 
of genes and transcription factors regulating cell 
proliferation, migration and inhibition of apoptosis 
(Notas et al, Mol. Oncol. in press, 2013). In contrast, 

estrogen receptor modulators”,95 or CBIs, for “co-
activator binding inhibitors”.86

3.2. Extranuclear signaling

Even in the earliest studies (mid-50’s) on steroid 
actions, it was observed that steroids can also act 
sometimes too fast, an effect that could not be at-
tributed to the classical, time-consuming, genomic 
mode of action.96,97 The key publication, however, 
which introduced the concept of non-genomic, rapid, 
extranuclear estrogen effects was that of Szego and 
Davis.98 The authors reported an acute, early (30 
seconds) increase of uterine cAMP in rats treated 
with physiological concentrations of E2. This work 
was followed, during the 70’s and 80’s, by the pub-
lication of several reports implying the existence of 
a rapid steroid action that is initiated at the plasma 
membrane level.99-115

Extranuclear estrogen receptor signaling has been 
critically reviewed in Ref 38,116,117. Their action can 
be categorized as follows:

1. Ion movement through the plasma membrane

Soon after the extranuclear/membrane actions of 
estrogen had been determined, a direct activation of 
Ca2+ flux into cells was reported.118 This effect was 
further confirmed by different groups, including 
ours,119 in a number of cell lines (reviewed in Ref 
120-122), a result recently identified as being involved 
in E2-dependent cardiac function.123 In addition, a 
specific effect of E2 on K+-channels has been found, 
both in the CNS124,125 and other tissues, including 
renal tubules and the gut.126-130 These rapid activities 
were recently reviewed in Ref 131. This effect may 
also explain gender differences in epithelial water 
and ion movements in health and during water and 
ion-related disease states.

2. Membrane-related kinases and interaction 
with growth factor receptors

The activation of a number of kinases, implicated 
in membrane signaling, was an early observation in 
the study of E2-related extranuclear actions. They 
include cyclic nucleotide (cAMP, cGMP) generating 
enzymes132-144 and subsequently activated protein ki-
nases,145-155 lipid kinases (such as PI3K),14,144,145,156-168 Src 
kinases119,145,158,159,163,169-176 and their interaction (direct 
as suggested for GPR30, or indirect through Src144) 
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cells from serum starvation-induced apoptosis. This 
is mediated in an ER- independent manner, as the 
effect is not reverted by the addition of the pure 
anti-estrogen ICI182780 (ICI) and relies on Akt in-
tracellular signaling, as the addition of the PI3K/Akt 
inhibitor wortmannin reverts this anti-apoptotic effect. 
In addition to this antiapoptotic effect, membrane-
acting estrogen also decreases the transcription of 
the EPOR, a result observed 6 hours after E2-BSA 
stimulation, which returns to basal levels thereafter, 
perhaps as a cellular response to overcome the pro-
apoptotic stimuli of serum deprivation. This effect 
was further explored by using erythropoietin receptor 
(EPOR) promoter constructs (which do not contain 
EREs), containing its proximal and distal parts. We 
show that this membrane-initiated estrogen action 
is exerted on the distal part of the EPOR promoter, 
although a more detailed analysis is still needed to 
further elucidate this interaction. These data provide, 
for the first time, evidence of an interaction of mER 
with the EPO/EPOR system. Interestingly, previ-
ously published data indicate that inverse modifica-
tions were induced by membrane-acting androgen: 
testosterone-BSA-induced apoptosis is reverted by 
EPO, an effect also mediated by Akt signaling.202 
Androgen, in that case, acts on EPOR transcription 
through the classical (proximal) promoter.

4.2. Human breast cancer specimens

In contrast to breast cancer cell lines, data on hu-
man breast cancer specimens are very rare. Our group 
was the first to provide data on patients’ specimens.203 
We have reported that mER are present on cell mem-
branes of both ER-positive and negative samples. In 
contrast, no staining of non-tumoral tissue is found, 
suggesting that mER expression is a specific feature of 
breast tumors. Whenever neo-adjuvant chemotherapy 
was applied prior to surgery, the intensity of mER was 
increased. It is of note that in the same publication 
we also reported a negative association of increased 
EPO and EPOR expression with disease outcome. 
These results provide a translational outcome of 
the negative control, exerted by mER on EPOR 
transcription, shown in the previous paragraph and 
advance membrane ER(s) as possible therapeutic 
targets. Nevertheless, it is essential to elucidate the 
nature of mER and differentiate between possible 
specific effects of alternative membrane-localized 

ERα36-mediated signals modulate immune func-
tions, while membrane-initiated signals lead to actin 
modification, modification of intracellular signaling 
cascades and negative regulation of immune func-
tions. In this respect, a clear distinction of genomic 
and non-genomic initiated transcriptional actions of 
estrogen is described for the first time.

4. Potential role of extranuclear ERs 
in breast cancer

Breast cancer, being the most common neoplasm 
affecting the female population worldwide, has been 
one of the main targets for the elucidation of the 
extranuclear effects of estrogen. Below, we will sum 
up work conducted on this tissue, categorizing it 
as in vitro and animal experiments, and work with 
patients’ samples.

4.1. Cell biology

Membrane localization of estrogen binding 
components has been reported in ER-positive and 
negative breast cancer cell lines, using fluorescently 
labeled membrane impermeable estrogens (E2-BSA-
FITC)106,109,113,145,170,194,200 or dendrimers.68 In addition, 
in a number of interesting publications, by means of 
specific antibodies, a membrane association of ERs 
has also been identified.12,13,15,30,39,40,46,48,62,67,68,70,106,109,179,197 
Interestingly, membrane estrogen receptors (mER) 
have been associated with lipid rafts,30,67,179,182,193,197 
cellular anchoring molecules,198,199 growth factor 
receptors,58,62,63,163,193 or related to receptor pamitoyla-
tion.39,40,48,51 In addition, native ERs (ERα),39,40,48,51,201 
or truncated forms of the receptor have been impli-
cated.8,10,12,13,16,33 All signaling cascades, described in 
the previous paragraph, have been reported in breast 
cancer cells. Activation of mER in breast cancer cells 
leads to cell survival, by activation of anti-apoptotic 
and suppression of pro-apoptotic molecules,119,145 
positioning this receptor localization as a pro-survival 
mechanism in breast cancer cells. In this respect, mER 
might be regarded as a negative prognostic factor in 
breast cancer (see the following paragraph).

In the field of cross-talk with growth factors af-
fecting cell survival, we herein report the interaction 
of membrane ERs with the erythropoietin (EPO) 
system. As presented in Figure 3, E2-BSA acts in an 
additive manner with EPO to protect breast cancer 
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receptor forms. More recently, we204 and others205 
reported the expression of ERα36 staining in a se-
ries of triple-negative breast tumors. The majority 
of tumors (~97%, and 83%, respectively, in the two 
publications) expressed this ERα variant. Interest-
ingly, the membrane association of ERα36 was a good 
prognostic factor in our series, being associated with 
an increased survival of patients. Perhaps, therefore, 
the assay of this isoform or the identification and ad-
ministration of specific modulators of the membrane 
localized ERα36 might be beneficial for the outcome. 
This of course necessitates further verification and 

testing, while the fact that ERα36 can mediate a bi-
phasic anti-estrogen signaling in ER-negative breast 
cancer cells, as recently reported,206 should be taken 
into account. The above results match those of Lee 
et al,207 who also reported the expression of ERα36 
in a small series of ER-positive and negative breast 
tumors. However, in a series of 896 patients,208 ERα36 
expression was associated with a poorer prognosis. 
Nevertheless, the authors did not specify the relevance 
of ERα36 localization (membrane and cytosolic) to 
patients’ survival, a feature which was found discri-
minant in our series.

Figure 3. Membrane-acting estrogens interact with EPOR. A. T47D breast cancer cells were incubated with 10-7M E2-BSA, in the 
absence or presence of 10-6M ICI182780 (a pure ER antagonist), or 10-7M erythropoietin (Epoetin® alpha), in a culture medium 
devoid of serum. Apoptosis was assayed after 24h. Control conditions=non-treated cells in the presence of 10% FBS. B. Cells were 
incubated with equimolar concentrations (10-7M) E2-BSA and erythropoietin, in the absence (control) or the presence of wortman-
nin (PI3K inhibitor), SB203580 (p38 kinase inhibitor) and AG490 (JAK2 inhibitor). Apoptosis was assayed after 24h incubation. C. 
The constructs used for EPOR promoter assay. See Ref 202 for details. D. E2-BSA decreases EPOR transcription, acting on the distal 
part of the EPOR promoter. All data represent the mean±SEM of three different assays in triplicate.
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In a non-published series of breast cancer patients, 
membrane-associated ERα staining was evidenced in 
~20% of cases. Apart from our work, only one recent 
publication has assayed extranuclear ER localization. 
In an excellent work, Welsh et al209 performed a tis-
sue microarray (TMA)-based retrospective analysis 
of extranuclear ER, in a series of 8 different cohorts 
of archival breast cancer cases, totaling 3981 differ-
ent samples. Analysis was performed by automatic 
methods and verified by pathologists, according to 
rigorously specified criteria. The authors report that 
major staining was cytoplasmic and not-membrane as-
sociated and that “the overall incidence of cytoplasmic 
staining only averaged 1.49%, ranging from 0% to 
3.2% at best. As many of the cytoplasmic cases were 
observed in cohorts from outside institutions, we did 
not have broad access to the original tissue to con-
duct any follow-up analysis on the individual cases”. 
The discrepancy between the two studies points to 
the need to establish specific criteria for membrane/
extranuclear staining and to train pathologists for 
such a diagnosis, based on the established standard 
diagnostic criteria for ER nuclear and extranuclear/
membrane positivity.

5. Concluding remarks

The data presented here relate to the field of 
estrogen receptors, with emphasis on their extra-
nuclear localization and action, an area in which 
considerable progress has been made over the last 
decade. The identification of receptor isoforms for 
ERα and β, dotted with specific actions, together with 
the exploration of extranuclear, rapid actions, have 
significantly expanded the field and provided novel 
insights explaining some of estrogen’s effects, which 
have been difficult to be integrated to the genomic 
action of the hormone. Much work has yet to be 
done in order to decipher the nature of a putative 
membrane “ERx” and to determine its effects, as 
well as the effect of extranuclear ER(s) cellular and 
molecular actions. In addition, the design, synthesis 
and evaluation of novel agents modifying the activity 
of membrane-acting estrogen could provide novel 
therapeutic approaches for malignancies in which 
E2 exerts a specific action.

In the case of breast cancer, estrogen together with 

progesterone receptors and Her2/neu are nowadays 
considered as the major predictive and prognostic 
biomarkers, driving cancer adjuvant therapy. Initial 
determination of ERs was made by ligand binding as-
says, in cytoplasmic preparations of tumor specimens. 
This technique enabled the detection of unliganded 
ERs and their isoforms, as determined by their ability 
to bind [3H]-estradiol. However, nuclear fractions of 
ERs were also evidenced,210 although liganded ERs 
could not be detected.211 Soon after, with the develop-
ment of specific anti-ER antibodies, ligand binding was 
routinely replaced by immunohistochemistry, which is 
the “gold standard” today. The use of antibodies has 
made possible the identification of both liganded and 
unliganded receptors,211 while their nuclear localiza-
tion is the only one taken into account for diagnostic/
therapeutic purposes. However, this method is also 
controversial: antibodies recognizing different parts 
of the receptor are on the market (critically discussed 
in Ref 209) and therefore the results provided are 
not comparable, especially in view of divergences in 
the binding capacity and the conformational effect on 
the receptor induced by anti-estrogen (used in some 
cases as a neo-adjuvant therapy). In support of this 
point, a recent publication of our group shows the 
identification of ERα36 immunoreactive molecules 
in a series of 52 triple-negative breast cancer cases204 
and also in ERα-negative and positive breast cancer 
specimens (Figure 4). Furthermore, using a fluores-
cent non-permeable E2 analog (E2-BSA-FITC), we 
have reported the presence of estrogen membrane 
binding sites in both ER-positive and negative breast 
cancer cases, which correlate with patients’ survival.203 
Finally, in 20% of breast cancer cases, a membrane 
immunostaining component could be identified.

So, where do we now stand? Should we integrate 
the knowledge of extranuclear and membrane-as-
sociated ERs into our diagnostic armamentarium? 
In the authors’ opinion, this development is as yet 
premature; in the absence of specific modulators, 
membrane ER(s) will not provide added diagnostic 
or therapeutic clues. However, their presence (either 
cytoplasmic or especially membrane-bound) might 
provide additional information on the possible re-
sponse of patients to hormonal manipulation. In this 
respect, a “re-education” of pathologists so that they 
may include the notion of mER within their diagnostic 
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assets seems necessary.
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