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AbstrAct

Women present an estradiol-dependent cardiovascular risk profile. based on various stud-
ies, it was considered that estrogen therapy (Et) in postmenopausal women could probably 
reduce the higher cardiovascular risk in this group. Assymetric dimethylarginine (ADMA) is 
an endogenous methylated arginine which inhibits nitric oxide (NO) synthesis by competing 
with the substrate of NO, L-arginine, leading to endothelial dysfunction and, consequently, 
to atherosclerosis. Moreover, ADMA has been considered as an independent risk factor for 
cardiovascular disease. It has also been found that hormone therapy (Ht), and mainly oral 
estrogen therapy, lowers ADMA concentrations in healthy postmenopausal women. the effect 
of estrogens on ADMA levels, although small, is considered important, as physiological vari-
ation of ADMA is limited. Nevertheless, larger randomized trials are necessary to establish 
that estrogens substantially lower ADMA levels and that these changes really reflect improved 
cardiovascular prognosis in postmenopausal women.
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IntroductIon

Estrogens have been known to exert various effects 
on the cardiovascular system.1,2 It has thus been shown 
that sex steroids retard the atherosclerotic process 
and induce rapid vasodilatation through the produc-

tion of an endothelium-derived vasoactive mediator, 
nitric oxide (NO).2-4 Estrogen-induced vasodilatation 
via nitric oxide seems to be mediated by asymmet-
ric dimethylarginine (ADMA) and ADMA serum 
concentrations are inversely related to endogenous 
estradiol levels.5

ADMA is an endogenous methylated arginine 
which inhibits NO synthesis, leading to endothelial 
dysfunction and consequent atherosclerosis.6 Experi-
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mental data have shown that ADMA is negatively 
correlated with flow-mediated vasodilatation7 and 
constitutes an important marker of carotid artery 
intima-media thickness.8 Even slightly increased 
ADMA blood levels are associated with higher risk 
for acute coronary events.9

Estradiol also exerts an anti-inflammatory effect 
in vitro, as well as in vivo, and accelerates endothe-
lial regrowth, thus promoting vascular healing.10 
Women present an age-dependent, and specifically 
an estradiol-dependent, cardiovascular disease risk 
pattern,11 as is demonstrated by the rise in the number 
of cardiovascular events after menopause.

Estrogen therapy (ET) has been considered as a 
means of reducing cardiovascular risk in postmeno-
pausal women.12,13 Nevertheless, the validity of such 
intervention in cardiovascular disease (CVD) risk 
reduction remains controversial.14-16 It has been shown, 
however, that hormone therapy (HT) affects ADMA 
levels and other independent risk factors.17-20 Based 
on the observation that ADMA is linked to CVD, 
a review of available data on the impact of HT on 
ADMA and CV events was undertaken.21-25

methods

A comprehensive search was conducted via 
MEDLINE (http://www.ncbi. nlm.nih.gov/entrez/
medline.html) employing the keywords: asymmetric 
dimethylarginine, ADMA, estrogen replacement 
therapy, cardiovascular disease, and postmenopausal 
women. Our search included all possible combina-
tions of keywords without any limitation in language 
or date. Fifty-six articles were found. Relevant cita-
tions in the reference lists of selected articles were 
also reviewed. Inclusion or exclusion of any article 
was based on relevance.

menopause

Menopause is defined as the permanent cessation 
of menstruation following the loss of ovarian activ-
ity. Menopausal status is considered to begin at the 
cessation of menstruation26 and is characteristically 
accompanied by a 10-20-fold increase in FSH and a 
3-fold increase in LH, with maximum values observed 
three years after menopause initiation. Following this 

stage, there is a gradual decline in both gonadotro-
pins. However, estrogens still continue to circulate 
in postmenopausal women, these derived from the 
peripheral conversion of androgens27,28 that are still 
produced by the ovaries and the adrenal glands.29

cardIovascular rIsK and menopause

CVD represents the first cause of mortality and 
morbidity in both genders, with the onset established 
approximately ten years later in women than in men.30 
Aging and estrogen deficiency have been reported as 
the most important factors of pertinent morbidity in 
women.31 The cessation of the ovarian function and 
the consequent reduction of sex steroid hormone 
levels have important metabolic and pathological 
consequences which adversely affect the cardiovas-
cular system. Postmenopausal women have higher 
total cholesterol, LDL cholesterol, triglycerides, and 
a-lipoprotein levels and lower HDL cholesterol levels 
than premenopausal women.32,33 Transition to post-
menopause is associated with augmentation in total 
and LDL-cholesterol values and a 16% increase in 
triglycerides, thus exceeding men’s levels.34,35 Finally, 
in the Study of Women’s Health Across the Nation 
(SWAN), transition to menopause, and specifically 
falling estrogen levels, were associated with changes in 
the peripheral vasculature indicative of an increased 
risk for CVD in the postmenopausal period.36

non-GenomIc actIons of estroGens on 
the vascular system

Human endothelial cell plasma membrane37 and 
vascular smooth muscle cells have estrogen receptors 
(ERs).38 Estrogens bind to these receptors and pro-
mote the activation of several kinase cascades, all of 
which have a common action, namely vasodilatation.1 
Estradiol binds to ERα and activates the phosphati-
dylinositol 3-kinase (PI3K)/Akt pathway. Activated 
Akt catalyzes the phosphorylation of the endothelial 
isoform of nitric oxide synthase (eNOS), increasing 
its activity and leading to the increased production 
of NO.39 NO is a potent vasodilator and mediates 
antiatherogenic and anti-inflammation actions. In the 
endothelial cells, the activation of PI3K/Akt modifies 
the expression of almost 250 genes, including cy-
clooxygenase, which mediates prostaglandin synthesis 
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resulting in long-term changes in cellular function.40 
Apart from this main pathway, there are several other 
actions on various pathways leading to rapid changes 
in calcium concentrations inside the endothelial cells 
and to induction of NO synthesis.41

Recent data have shown that estrogens also regu-
late cytoskeleton remodelling and endothelial cells 
migration to repair endothelial injuries.42 Specifically, 
it has been found that non-transcriptional estrogen 
signals provoke instant re-arrangements of actin 
cytoskeleton and formation of membrane structures 
that promote movement to endothelial cells. Ad-
ditionally, estrogens increase the permeability of 
junctions between endothelial cells and contribute to 
angiogenesis.43 It must be stressed, however, that the 
function as well as the number of estrogen receptors 
decline with age.44

hormone therapy and cardIovascular 
dIsease

Based upon the beneficial effects of the endogenous 
estrogens on the cardiovascular system and specifi-
cally on vasodilatation, it has been hypothesized that 
estrogen replacement therapy, alone or combined 
with progestins, might be capable of reducing the 
risk for cardiovascular disease in menopause. In 
fact, the positive effect of hormone therapy (HT) on 
endothelium-dependent vasodilatation was proven 
in healthy45,46 or low CVD risk47,48 postmenopausal 
women.

Publication of the estrogen-progestogen arm of 
the Women’s Health Initiative (WHI) study in 2002 

revealed that hormone therapy increased coronary 
heart disease, strokes, deep venous thrombosis, and 
breast cancer.49 Subsequent results of the WHI study 
reversed the negative attitude concerning HT by show-
ing that there was no significant difference between 
combined estrogen progestin therapy and placebo use 
in the risk for CVD.50 Later, the ET arm of the WHI 
study also showed that there was no significant dif-
ference in cardiovascular events between the therapy 
and the placebo groups.51 Both publications stated 
that there was no relation between the chronological 
and the menopausal age at therapy initiation and the 
observed effects. However, according to the final re-
sults of the ET arm of the study, there was a decrease 

in CVD risk when ET was initiated prior to the age 
of 60 years.52 Subsequent publications supported the 
age-related favourable effect of ET in CVD events.53,54 
Currently, the use of HT is indicated as treatment of 
moderate to severe vasomotor symptoms.55-57 Still, it 
is not recommended for prevention of cardiovascu-
lar events at any age, even though short-term HT, 
administered to women of 50-59 years old, lowered 
the risk of CVD and all-cause mortality.58,59

asymmetrIc dImethylarGInIne (adma)

ADMA is an aminoacid produced by the deg-
radation of methylated nuclear proteins. ADMA is 
produced in all tissues and is released in the plasma. 
It mainly acts as an endogenous inhibitor of all three 
isoforms of nitric oxide (NO) synthase60 and exerts 
important biological effects on the cardiovascular 
system. ADMA was first identified in 1992 and since 
then it has become the focus of great scientific interest. 
High serum levels of ADMA are found in pathological 
conditions leading to NO deficiency. Accumulation 
of ADMA results from increased methylation of 
proteins by methyltransferases (PRMT), precipitated 
proteolysis, decreased renal excretion, and impaired 
metabolism by Ν΄G-dimethylarginine dimethylami-
nohydrolase (DDAH).

The amount of ADMA produced in cells depends 
on the rate of the protein metabolism and the meth-
ylation of arginine, since there is no known pathway 
of ADMA biosynthesis from free arginine.61 Its bio-
synthesis is mediated by PRMT. However, the exact 
mechanism regulating PRMT activity is unknown. 
Stress increases PRMT activity, and promotes ADMA 
synthesis in endothelial cells in vitro, through the 
activation of the transcription Nuclear Factor-B (NF-
B).62 Furthermore, low-density lipoproteins (LDL) 
stimulate PRMT activity and ADMA synthesis in 
the endothelium.63 Protein methylation is increased in 
proliferating cells. Additionally, anti-DNA antibodies 
in systemic lupus erythematosus promote methylation 
of ribonucleoproteins and may be responsible for the 
increased synthesis of methylarginine.64,65

Precipitated proteolysis may contribute to el-
evation of ADMA in hypercatabolic states such as 
endotoxemia, hyperthyroidism, and muscular dystro-
phy.66-68 The intracellular metabolism of ADMA to 
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L-citrulline and dimethylamine is mediated by the 
enzyme DDAH.69 About 10% of total ADMA enters 
the plasma and is excreted by the kidneys. Thus, any 
severe renal insufficiency is liable to lead to increased 
ADMA blood levels.70

Interestingly, ADMA molecules produced in the 
cells of a specific tissue may act and inhibit NO syn-
thase in other tissues. Such a phenomenon is observed 
between macrophage and endothelial cells71 and pos-
sibly between smooth muscle and endothelial cells. It 
is speculated that this kind of action may comprise 
a trancellular signalling pathway.72 ADMA levels 
determine the rate of NO production with a relevant 
effect on blood vessels.73 It has been hypothesized 
that ADMA not only inhibits NO synthesis but its 
action as well.69 Inhibition of NO synthesis by an 
increase in ADMA levels also leads to disturbances 
in the vascular homeostasis models, namely dilata-
tion versus constriction, activation of platelets, and 
unfavourable changes in transcellular communica-
tion. Altogether, the aforementioned modifications 
accelerate atherogenesis.74

ADMA and cardiovascular disease

There is ample evidence that ADMA, apart from 
producing effects related to NO synthase inhibition 
such as elevation of blood pressure, vasoconstriction, 
increased renovascular resistance, reduced forearm 
blood flow, reduced heart rate, and reduced car-
diac output, also constitutes a marker of endothelial 
function and of cardiovascular risk.75-78 As already 
mentioned, ADMA levels are increased in various 
atherosclerotic conditions such as advanced age, hy-
pertension, diabetes mellitus, hypercholesterolemia, 
and hyperhomocysteinemia.69 Moreover, ADMA 
concentrations are high both in asymptomatic sub-
jects with hypercholesterolemia7 and in patients with 
cardiovascular or metabolic disease.79

Multivariate regression analyses of all known 
CDV risk factors showed that ADMA constitutes an 
independent risk factor for CDV. The practical value 
of such a marker becomes obvious in the group of 
patients of moderate risk, namely those who stand 
in the gray zone.78

It is relatively well established that ADMA not 
only reflects but also participates in the development 

of the atherosclerotic process. In a well designed 
prospective study, high ADMA levels were correlated 
with intima-media thickness (IMT), which is an in-
dependent prognostic factor of coronary disease.80 In 
another study on the relation between cardiovascular 
risk and plasma ADMA concentrations in a cohort 
of haemodialysis patients followed for a mean pe-
riod of 33.4 months, it was found that ADMA levels 
measured at start were correlated with the mortality 
observed throughout the study.81 In another study 
in patients with end-stage renal disease followed 
for a year, it was shown that ADMA was correlated 
and, moreover, represented a prognostic factor of 
IMT. ADMA levels and age were the most powerful 
prognostic markers of cardiovascular morbidity and 
mortality82 in this group.

Equally important was the study of patients hos-
pitalized in an intensive care unit, in which it was 
shown that the mortality among patients with elevated 
ADMA concentrations was 17-fold higher, compared 
to the mortality of patients with lower values.81 In a 
prospective study of 153 patients with angina pectoris, 
subjected to selective coronary angioplasty and divided 
into groups according to the ADMA values prior to 
intervention and followed for an average period of 16 
months, 51 cardiovascular events were noted. Coxs 
multivariate regression analysis revealed that the risk 
was positively correlated with ADMA incensement. 
Additionally, ADMA was an independent risk fac-
tor among age, smoking, hypercholesterolemia, and 
stent placing.82

It is worth mentioning that ADMA levels are 
higher in patients who manifest an acute coronary 
event compared to patients diagnosed with angina 
pectoris.83 There are many other prospective and well 
designed studies demonstrating the important role 
of ADMA as an independent prognostic marker of 
cardiovascular risk.

ADMA and estrogens

The favourable action of estrogens on the endothe-
lium is mediated through stimulation of transcription 
of the endothelial isoform of the nitric oxide synthase 
(eNOs) gene41 and, furthermore, through the activa-
tion of the eNOs, during the binding with ERa, and 
through the PI3-kinase pathway.84 The end result of 
the estrogenic action (genomic and non genomic) is 
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the maintenance of NO at normal or higher levels. 
Additionally, estrogens inhibit the accumulation of 
ADMA by increasing the activation (but not expres-
sion) of DDAH and by protecting the DDAH, which 
is sensitive to oxidative stress.25 Finally, estrogenic 
action per se is beneficial in the biochemical profile 
of classic CV risk factors.

The fact that ADMA levels are lower in premeno-
pausal women than in men of the same age and rise 
in the postmenopausal period indicates an effect of 
estrogens in ADMA metabolism in vivo.85 Estrogens 
also inhibit the accumulation of ADMA in endothelial 
cells cultures,86 and in ovariectomised animals in vivo87 
and can counteract the changes induced by oxLDL 
on the DDAH/ADMA/NO pathway. Specifically, 
estradiol counteracts oxidized LDL-induced ADMA 
production by cultured human endothelial cells.88

Furthermore, ADMA levels are significantly de-
creased a in hyperestrogenemic conditions such as 
pregnancy89 and ovulation induction with gonadotro-
pins.86 By contrast, endothelial dysfunction in preec-
lampsia is characterised by high ADMA levels.90,91 
Finally, women with polycystic ovary syndrome present 
higher ADMA concentrations than controls, while 
treatment with combined estrogens and antiandrogens 
significantly decrease ADMA.92

ADMA and hormone therapy

ADMA having been established as an independent 
marker of endothelial function and cardiovascular risk 
is currently used in the assessment of the cardiovascu-
lar effects of hormone therapy. Following a two-week 
subcutaneous implantation of 100mg ethynylestradiol, 
Holden et al showed a significant reduction (around 
18%) of plasma ADMA concentration.25 In the same 
experiment, it was found that human and murine en-
dothelial cell lines exposed to 17β-estradiol expressed 
a dose-dependent decrease, in ADMA production.25 
This study supported retrospective and cross-sectional 
studies indicating that HT acts beneficially on the 
cardiovascular system.93

Teerlink et al demonstrated that conjugated es-
trogens, and raloxifene to a lesser extent, decrease 
ADMA levels in healthy postmenopausal women.21 
The study included hysterectomized women who re-
ceived either conjugated equine estrogens (0.625mg/d), 

raloxifene or placebo. During the two-year treat-
ment, there was a consistent reduction in ADMA 
levels only in women taking estrogens. The average 
post-baseline difference in ADMA was decreased 
by 8% (p=0.003). Interestingly, there was a trend 
towards a slight rise in ADMA concentrations in the 
placebo group throughout the two-year period, prob-
ably reflecting an effect of aging. Finally, reductions 
were also observed in the raloxifene group, although 
non-significant.

Research has also been focused on the type of es-
trogen therapy, the dose, the route of administration, 
and progestogens addition as to their effect on the 
cardiovascular system. Post et al conducted a study 
on 65 women who randomly received unopposed 
micronized 17β-estradiol (2 mg/d), or micronized 
17β-estradiol (2 mg/d) plus either dydrogesterone (10 
mg/d), or trimegestone (0.5 mg/d), or placebo during 
a 12-week period.22 The results showed reduction 
in ADMA levels in all treatment groups, but not in 
the placebo group. Compared to baseline and pla-
cebo, the greater reduction in ADMA concentration 
was noted in the estrogen plus trimegestone group 
(approximately 19%) and less in the estrogen plus 
dydrogesterone group (almost 6.5%), while in the 
unopposed estrogen group the reduction was ≈4%. 
The same research team had shown 8% reduction 
with conjugated equine estrogens.21 The difference 
in ADMA changes between the dydrogesterone and 
trimegestone was attributed to the stronger antiestro-
genic and antiandrogenic action of the latter.

In 2006, Verhoeven et al investigated the changes 
in ADMA levels according to the route of administra-
tion.23 The authors randomly assigned 152 women to 
receive either transdermal 17β-estradiol (50μg/d), or 
oral micronized 17β-estradiol (1mg/d) unopposed, or 
oral micronized 17β-estradiol (1mg/d) plus gestodene 
(25μg/d), for thirteen 28-day cycles. They found sig-
nificant reductions in all treatment groups. In fact, 
oral treatment groups presented greater reduction 
in ADMA levels than transdermal estrogen group. 
Compared to baseline, a 4.4% reduction was noted 
in the transdermal estrogen group 6.8% in the un-
opposed oral estrogen group and 8.5% in the oral 
estrogen plus gestodene group. The differences from 
baseline were similar to those found in two previous 
studies of the same research team.21,22 Gestodene in 
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contrast to trimegestone seems to minimally influ-
ence the lowering effect of estrogens. The difference 
between the transdermal and oral administration may 
be attributed to the fact that ADMA is metabolized 
in the liver.94,95

Verhoeven et al randomly assigned 90 healthy 
postmenopausal women to receive either intranasal 
17β-estradiol (175μg/d) plus norethisterone (275μg/d), 
or oral 17β-estradiol (1mg/d) plus norethisterone 
(0.5mg/d), for 52 weeks.24 They found that there was 
a significant reduction in ADMA levels only in the 
oral treatment group (p<0.001). Specifically, the mean 
percentage decrease in ADMA levels, compared to 
baseline, was approximately 1.6% in the intranasal 
treatment group and 6.7% in the oral treatment group. 
It should be underlined that there was a consistent 
decrease of around 8% in ADMA concentrations by 
oral estrogens in the last and in the three previous 
studies, conducted by the same research team. The 
ADMA lowering effect is considered important, 
though statistically moderate, considering the fact 
that biological variation of ADMA in plasma con-
centration does not exceed 12%.96

A recent study suggested that transdermal estrogen 
treatment had a modulating effect on ADMA plasma 
levels in patients who had undergone surgery in the 
early premenopausal period;97 after six months of 
treatment, women who received oral 17β-estradiol did 
not present significant reduction in ADMA concentra-
tions, while controls (no treatment) had significantly 
higher ADMA levels.

conclusIons

Hormone therapy has been traditionally prescribed 
for women complaining of climacteric symptoms 
rather than postmenopausal cardiovascular disease 
prevention. However, there has been growing interest 
in trying to additionally improve metabolic and car-
diovascular risk in postmenopausal women through 
HT. Nevertheless, the report of the initial results of 
two large-scale randomized clinical trials, namely 
WHI and HERS, raised considerable scepticism and 
serious concerns regarding not only effectiveness but 
also adverse events of the hormonal therapy. Critical 
evaluation of these controversial results, in accordance 
with other observational and mostly cross-sectional 

studies, raised the question as to whether or not 
younger, early postmenopausal women with non-
established vascular disease could be candidates for 
HT. For this reason, many cardiovascular risk markers 
are being sought and applied in pertinent studies in 
perimenopausal women.

ADMA, a NO synthase inhibitor, has proven to be 
an independent cardiovascular disease risk marker. 
Overall, HT, and particularly oral estrogen therapy, 
has been shown to lower ADMA concentrations, 
even within two weeks, in healthy postmenopausal 
women. The effect of estrogens on ADMA levels, 
although small, is considered important, as physi-
ological variation is limited. Nevertheless, larger 
randomized trials are necessary to substantiate the 
notion that estrogens lower ADMA levels and that 
these changes really reflect improved cardiovascular 
prognosis in postmenopausal women.
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